The department staff

DSC_9650

The department at PURE SPBU

The head of the department

СуслинаТА

Tatyana A. Suslina

The department secretary

foto

Marina Riabova

Professors

DSC_9686-3

Mikhail V. Babich

DSC_9790-3

Mikhail I. Belishev

DSC_9737-3

Aleksander S. Blagoveshchenskii

Aleksei P. Kiselev

Aleksei P. Kiselev

DSC_9786-3

Mikhail A. Lyalinov

Sergey_Naboko

Sergei N. Naboko

ПламеневскийБА_1

Boris A. Plamenevskii

grigorirozenblioum

Grigori V. Rozenblum

DSC_9805-4

Natalia V. Smorodina

СуслинаТА

Tatyana A. Suslina

DSC_1019-2

Alexander A. Fedotov

yafaev

Dmitri R. Yafaev

Associate professors

DSC_9768-3

Andrey V. Badanin

DSC_9774-3

Aleksandr M. Budylin

Dmitrieva

Liudmila A. Dmitrieva

DSC_9661-3

Aleksei V. Ivanov

Kolonitskii_S

Sergey B. Kolonitskii

DSC_9755-3

Sergey B. Levin

DSC_9711-3

Victor S. Mikhaylov

DSC_9704-3

Maria V. Perel

romanov_7329

Roman V. Romanov

sarafanov

Oleg V. Sarafanov

IMG_4178

Vladimir A. Slousch

DSC_9664-3

Andrei S. Slutskij

Vladimir V. Sukhanov

Vladimir V. Sukhanov

DSC_9747-3 (1)

Mikhail M. Faddeev

Foto_Filippenko

Georgii V. Filippenko

Assistant Professors

DSC_9744-3

Aleksei A. Bagaev

DSC_9800-3

Natalia G. Gelfreikh

DSC_9722-3

Aleksandr S. Poretskii

Assistants

OLYMPUS DIGITAL CAMERA

Nikita N. Senik

Researchers

Its, A.

Alexander R. Its

Grigori Rozenblum

grigorirozenblioum

Professor, PhD, associate professor (Russia),
Professor (Sweden)

email: grigoriblum@gmail.com

PURE SPBU

Research interests:

  1. Spectral theory of differential and integral operators,
  2. Toeplitz operators

Main papers (> 75 in total)

  1. Distribution of the discrete spectrum of singular differential operators. (Russian) Dokl. Akad. Nauk SSSR 202 (1972), 1012–1015.
  2. Near-similarity of operators and the spectral asymptotic behavior of pseudodifferential operators on the circle. (Russian) Trudy Moskov. Mat. Obshch. 36 (1978), 59–84,
  3. Spectral asymptotic behavior of elliptic systems. (Russian) Boundary value problems of mathematical physics and related questions in the theory of functions, 12. Zap. Nauchn. Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI) 96 (1980), 255–271 (with Solomyak, M. Z.; Shubin, M. A.)
  4. Spectral theory of differential operators. (Russian) Current problems in mathematics. Fundamental directions, Vol. 64 (Russian), 5–248, Itogi Nauki i Tekhniki, Akad. Nauk SSSR, Vsesoyuz. Inst. Nauchn. i Tekhn. Inform., Moscow, 1989; English translation: Springer, Encyclopaedia of Mathematical Sciences , vol.64, 1994
  5. Index formulae for pseudodifferential operators with discontinuous symbols. Ann. Global Anal. Geom. 15 (1997), no. 1, 71–100. Domination of semigroups and estimates for eigenvalues. (Russian) Algebra i Analiz 12 (2000), no. 5, 158—177 ( with Melgaard, M.)
  6. Eigenvalue asymptotics for weakly perturbed Dirac and Schrödinger operators with constant magnetic fields of full rank. Comm. Partial Differential Equations 28 (2003), no. 3-4, 697–736.
  7. Regularisation of secondary characteristic classes and unusual index formulas for operator-valued symbols. Nonlinear hyperbolic equations, spectral theory, and wavelet transformations, 419–437, Oper. Theory Adv. Appl., 145, Adv. Partial Differ. Equ. (Basel), Birkhäuser, Basel, 2003. ( with Agranovich, M. S.);
  8. Spectral boundary value problems for a Dirac system with singular potential. (Russian) Algebra i Analiz 16 (2004), no. 1, 33—69; ( with Melgaard, M. )
  9. Schrödinger operators with singular potentials. Stationary partial differential equations. Vol. II, 407–517, Handb. Differ. Equ., Elsevier/North-Holland, Amsterdam, 2005. (with Shirokov, N.)
  10. Infiniteness of zero modes for the Pauli operator with singular magnetic field. J. Funct. Anal. 233 (2006), no. 1, 135–172. ( with Tashchiyan, G.)
  11. On the spectral properties of the perturbed Landau Hamiltonian. Comm. Partial Differential Equations 33 (2008), no. 4-6, 1048–1081. ( with Sobolev, Alexander V).
  12. Discrete spectrum distribution of the Landau operator perturbed by an expanding electric potential. Spectral theory of differential operators, 169–190, Amer. Math. Soc. Transl. Ser. 2, 225, Adv. Math. Sci., 62, Amer. Math. Soc., Providence, RI, 2008.
  13. On lower eigenvalue bounds for Toeplitz operators with radial symbols in Bergman spaces. J. Spectr. Theory 1 (2011), no. 3, 299–325. (with Vasilevski, N.)
  14. Toeplitz operators defined by sesquilinear forms: Fock space case. J. Funct. Anal. 267 (2014), no. 11, 4399–4430. (with Shirokov, N. ) Some weighted estimates for the ∂¯¯¯-equation and a finite rank theorem for Toeplitz operators in the Fock space. Proc. Lond. Math. Soc. (3) 109 (2014), no. 5, 1281–1303. (with Vasilevski, N.)
  15. Toeplitz operators in the Herglotz space. Integral Equations Operator Theory 86 (2016), no. 3, 409–438. (with Nursultanov, M.)
  16. Eigenvalue asymptotics for the Sturm-Liouville operator with potential having a strong local negative singularity. Opuscula Math. 37 (2017), no. 1, 109–139. ( with Tashchiyan, G) .
  17. Eigenvalue asymptotics for potential type operators on Lipschitz surfaces of codimension greater than 1. Opuscula Math. 38 (2018), no. 5, 733–758.

Teaching:

  1. Methods of investigation of discrete spectrum for operators of mathematical physics, Master students

Other information:

  1. Editor in Chief: American Journal of Mathematical Analysis
  2. Member of editorial board: Journal of Spectral Theory
  3. Member of editorial board: Boletín de la Sociedad Matemática Mexicana Journal of Mathematical Sciences (Springer)

Marina V. Riabova

foto

специалист по документообороту отдела обеспечения
деятельности руководителей учебно-научных подразделений

Контакты

m.ryabova@spbu.ru
тел. 428-75-79

Ekaterina Shchetka

sch_n

email: shchetka.ekaterina@mail.rue.shchetka@spbu.ru

Curriculum vitae

PhD student since 2017.

I have a research position at the Chebyshev Laboratory.

Advisor: Prof. Dr. A. Fedotov

Research interests

  • spectral theory of almost periodic Schrodinger operators;
  • asymptotic analysis;
  • analytic theory of difference equations on the complex plane;
  • spectral theory of ergodic Schrodinger operators.

Preliminary PhD research proposal

Quasiclassical description of the geometric structure of the spectrum for almost Mathieu equation.

Publications

  1. A. Fedotov, E. Shchetka. Monodromy matrices for Harper equation. Proceedings of the International Conference Days on Diffraction 2018, pp. 4, St. Petersburg: IEEE;
  2. A. Fedotov and E. Shchetka. Complex WKB method for a difference Schrödinger equation with the potential being a trigonometric polynomial. St. Petersburg Math. J. 29 (2018), 363-381;
  3. A. Fedotov, E. Shchetka. Berry phase for difference equations. Proceedings of the International Conference Days on Diffraction 2017, pp. 113—116, St. Petersburg: IEEE;
  4. A.A. Fedotov, E.V. Shchetka. The complex WKB method for difference equations in bounded domains. J. Math. Sci. (2017) 224: 157—169;
  5. А.А. Федотов, Е.В. Щетка, Комплексный метод ВКБ для разностного уравнения Шрёдингера, потенциал которого — тригонометрический полином, Алгебра и анализ, 29:2 (2017), 193–219;
  6. A. Fedotov, E. Shchetka. Complex WKB method for difference equations in unbounded domains. Proceedings of the International Conference Days on Diffraction 2016, pp. 140—143, St.Petersburg: IEEE;
  7. А. А. Федотов, Е. В. Щетка, Комплексный метод ВКБ для разностных уравнений в ограниченных областях. Зап. научн. сем. ПОМИ, 438, ПОМИ, СПб., 2015, 236–254.

Conferences

  • Conférence «Semi-classical and geometric asymptotics in mathematical physics»(Laboratoire CPT, Université de Toulon, France, 2018);
  • Annual International Conference «Days on Diffraction», (PDMI RAS, St.Petersburg, 2018);
  • St. Petersburg Young Researcher Conference in Probability Theory and Mathematical Physics, (PDMI RAS, St.Petersburg, 2017);
  • Annual International Conference «Days on Diffraction», (PDMI RAS, St.Petersburg, 2017);
  • A trilateral German-Russian-Ukrainian summer school «Spectral Theory, Differential Equations and Probability», (Johannes Gutenberg Universität, Mainz, Germany, 2016);
  • 8th St.Petersburg Conference in Spectral Theory, (Euler International Mathematical Institute, 2016);
  • Annual International Conference «Days on Diffraction», (PDMI RAS, St.Petersburg, 2016);
  • International Student Conference «Science and Progress», (St. Petersburg State University, 2015).

Additional information

  • Government Scholarship for Ph.D. students in priority areas of modernization and technological development of Russia (2018);
  • The winner of the competition for students and young researchers «Petropolitan Science (Re)Search» (2017);
  • Bocconi Institute of Data Science Award (Milan, Italy, 2017);
  • Deich scholarship for the best master’s thesis (2017);
  • St. Petersburg State University Alumni Association Scholarship (2016);
  • St. Petersburg Government Scholarship for high academic achievements (2016);
  • Rokhlin Grant for young mathematicians of St. Petersburg (2016);
  • The 2nd place winner of the August Möbius Competition (Moscow) (2015).

Памяти академика Л. Д. Фаддеева (1934–2017)

Видеозапись совместного заседания
Санкт-Петербургского математического общества и
Секции математики Дома Ученых,
посвященного памяти
академика Л. Д. Фаддеева (1934–2017)

Видеозапись доступна по ссылке

Мокеев Дмитрий Сергеевич

mokeevds

email: mokeev.ds@yandex.ru

Год поступления в аспирантуру: 2016

Научный руководитель: д.ф.-м.н. Е.Л. Коротяев

 Научные интересы

  • спектральная теория дифференциальных операторов,
  • обратные задачи

Читать далее

Дмитрий Рауэльевич Яфаев

yafaev

Профессор университета Ренн, Франция.
Ведущий научный сотрудник кафедры высшей математики и математической физики СПбГУ.

e-mail: dimitri.yafaev@univ-rennes1.fr

Подробный CV (Francais), Краткий CV (English)

PURE СПбГУ

Научные интересы

  • Спектральная теория дифференциальных операторов
  • Математическая теория рассеяния

Читать далее

Mark Dorodnii

email: mdorodni@yandex.ru

_MG_8543_683

Год поступления в аспирантуру: 2016

Научный руководитель: д.ф.-м.н. Т.А. Суслина

 Научные интересы

  • спектральная теория дифференциальных операторов,
  • теория усреднений

Читать далее