Семинар 7 марта

7 марта в 18:00 состоится заседание семинара кафедры Высшей математики и математической физики, ПОМИ, ауд. 203.

Докладчик: М.А. Лялинов

Тема: Акустическое рассеяние на полубесконечном секторе с импедансными краевыми условиями

Аннотация
In this work we study the problem of diffraction of an acoustic plane wave by a semi-infinite angular sector with impedance boundary conditions on its surface. It is studied by means of incomplete separation of variables. With the aid of Watson–Bessel integral representation the problem is reduced to a boundary value problem on the unit sphere with an operator-impedance boundary condition on a cut of the sphere. The latter problem is further studied by means of the traditional methods of extensions of sectorial sesquilinear forms. The Sommerfeld integral representation is obtained from that of Watson–Bessel with the aim to develop the far-field asymptotics. Analytic properties of the corresponding Sommerfeld transformant are also discussed. For a narrow impedance sector, an asymptotic formula for the diffraction coefficient of the spherical wave propagating from the vertex is derived.

Семинар 28 февраля

28 февраля в 18:00 состоится заседание семинара кафедры Высшей математики и математической физики, ПОМИ, ауд. 311.

Заседание посвящается 90-летию со дня рождения Михаила Соломоновича Бирмана.

Докладчик: Т.А.Суслина.

Тема: О математическом творчестве М.С. Бирмана

Объявление

Семинар 21 февраля

21 февраля в 18:00 состоится заседание семинара кафедры Высшей математики и математической физики, ПОМИ, ауд. 203.

Докладчик: Тимур Болохов

Тема: Самосопряженные расширения оператора Лапласа на поперечном и продольном подпространствах.

Аннотация
С использованием базиса векторных сферических гармоник рассматривается параметризация поперечного и продольного подпространств пространства трехмерных векторных функций трех переменных. Показывается, что действие оператора Лапласа во введенных параметризациях разделяется, а получающиеся радиальные операторы совпадают с радиальными операторами скалярного случая. В то же время, индуцированные скалярные произведения для новых радиальных функций отличаются от «плоского» скалярного произведения на полуоси, что приводит к появлению нетривиальных индексов дефекта у симметрических радиальных операторов для орбитального момента l=1, определенных на множестве гладких функций, быстро убывающих в начале координат. Далее рассматриваются самосопряженные расширения этих симметрических операторов и строятся выражения для связанных с ними сферически-симметричных замкнутых расширений квадратичной формы оператора Лапласа на поперечном и продольном подпространствах.

Курс лекций Д.Р. Яфаева «Математическая теория рассеяния»

КУРС ЛЕКЦИЙ ЛАБОРАТОРИИ ИМ. ЧЕБЫШЕВА
Лаборатория Чебышева, ауд. 413, 14-я линия В.О., 29
Дмитрий Яфаев (Université Rennes 1 и СПбГУ)
«Математическая теория рассеяния»
Расписание лекций:
среда 7, 14, 21, 28 марта и 4 апреля – 9:00-11:00,
суббота 10, 17, 24, 31 марта – 11:00-13:00.

Приглашаются все желающие!
Объявление.

Семинар 14 февраля

14 февраля в 18:00 состоится заседание семинара кафедры Высшей математики и математической физики, ПОМИ, ауд. 203.

Докладчик: Смышляев Валерий Павлович

Тема: Двухмасштабное усреднение высококонтрастных систем.

(По совместной работе с Ильей Камоцким)

Санкт-Петербургская зимняя молодежная конференция по теории вероятностей и математической физике

С 19-21 декабря 2017 года в ПОМИ будет проходить Санкт-Петербургская зимняя молодежная конференция по теории вероятностей и математической физике

Тематика конференции посвящена следующим проблемам. Детерминантные и пфаффианные процессы, ветвящиеся процессы, спектры случайных матриц, гауссовские процессы, диффузионные процессы, усреднение периодических операторов, случайные графы, статистическая механика.

Организационный комитет: 
1.Буфетов А.И.
2.Смородина Н.В.
3.Запорожец Д.Н.
4.Никитин П.П.
5.Залесская Н.В.

Программа конференции доступна по ссылке http://www.pdmi.ras.ru/EIMI/PDMI/pdmi_17/program.pdf

 

Семинар 20 декабря

20 декабря в 18:00 состоится заседание семинара кафедры Высшей математики и математической физики, ПОМИ, ауд. 203.

Докладчик: Евгений Городницкий

Тема: Разложение решений волнового уравнения по заданным локализованным решениям с использованием вейвлет-анализа Пуанкаре.

Аннотация
Доклад посвящен разложению решения волнового уравнения по заранее заданным решениям и применению полученного разложения к сейсмике. Для построения такого представления используется непрерывный вейвлет-анализ Пуанкаре. Оказывается, что для однородных сред построенное представление является точным, а для плавно-неоднородных позволяет получить представление в виде суммы известных локализованных асимптотических решений – квазифотонов, предложенных в работе В. М. Бабича и В. В. Улина. В докладе демонстрируется пример применения разложения решения по квазифотонам к задаче сейсмической миграции в простейшей постановке.

Семинар 13 декабря

13 декабря в 18:00 состоится заседание семинара кафедры Высшей математики и математической физики, ПОМИ, ауд. 203.

Докладчик: Н. Сеник

Тема: Об усреднении эллиптических локально периодических операторов

Аннотация
В докладе будет рассмотрена задача усреднения для матричного силь-
но эллиптического оператора Aε = −div A(x,x/ε) ∇ в пространстве Rᵈ.
Функция A предполагается периодической по второму аргументу, так
что при малых ε коэффициенты этого оператора быстро осциллируют.
Нас интересует, как ведет себя его резольвента в различных опера-
торных нормах, когда параметр ε стремится к 0. Ранее подобный воп-
рос изучался для случая липшицевых по первому аргументу функций A;
сейчас мы ослабим гладкость до гёльдеровой с показателем 0⩽s<1.

Семинар 6 декабря

6 декабря в 18:00 состоится заседание семинара кафедры Высшей математики и математической физики, ПОМИ, ауд. 203.

Докладчик: М.В. Кукушкин

Тема: Спектральные свойства операторов дробного дифференцирования

Аннотация
В данной работе представлены результаты полученные в области спектральной теории операторов дробного дифференцирования. Доказан ряд новых утверждений, представляющих самостоятельный интерес в теории дробного исчисления. Введена новая конструкция многомерного дробного интеграла в направлении. Сформулированы достаточные условия представления функций дробным интегралом в направлении. В частности доказано вложение пространства Соболева в классы функций представимых дробным интегралом в направлении, данный результат является новым и представляет самостоятельный интерес в теории дробного исчисления. Стоит отметить, что было построено максимальное расширение оператора Киприянова, был найден сопряженный оператор. Все это создает полную картину, отражающую качественные свойства операторов дробного дифференцирования в различных смыслах. Следует отметить, что в качестве основных новых результатов были доказаны следующие теоремы: теорема устанавливающая свойство сильной аккретивности для оператора дробного дифференцирования в смысле Киприанова, теорема устанавливающая свойство секториальности для дифференциального оператора второго порядка с дробной производной в младших членах, теорема устанавливающая свойство максимальной аккретивности, доказана теорема о дискретности спектра действительной части оператора, получена двусторонняя оценка собственных значений действительной части оператора. В качестве основного нового результата доказана теорема о дискретности спектра дифференциального оператора второго порядка с дробной производной в младших членах. С помощью теории билинейных форм нами были получены основные теоретические результаты для дифференциальных операторов второго порядка с дробной производной в младших членах. Примечательно, что использование билинейных форм в качестве инструмента для изучения дифференциальных операторов второго порядка с дробной производной в младших членах дает возможность увидеть доминанту старшего члена оператора, при проявлении его функциональных свойств. Этот метод может быть использован для изучения спектра возмущенного оператора дробного дифференцирования.

Семинар 29 ноября

29 ноября в 18:00 состоится заседание семинара кафедры Высшей математики и математической физики, ПОМИ, ауд. 203.

Докладчик: Мешкова Юлия

Тема: Усреднение периодических гиперболических систем при учете корректора

Аннотация
Доклад относится к теории усреднения периодических дифференциальных операторов. Нас интересует аппроксимация решений гиперболических систем в пределе малого периода (с оценкой погрешности операторного типа). Приближение решений по \(L_2\)-норме (с операторной оценкой) получено М. Ш. Бирманом и Т. А. Суслиной (2008). Наш основной результат — аппроксимация решения по энергетической норме при учете корректора. При этом приходится дополнительно предполагать, что начальное данное для решения нулевое (а для производной решения по времени — из класса Соболева \(H^2\)). Для доказательства используется спектральный подход к задачам усреднения, развитый М. Ш. Бирманом и Т. А. Суслиной.