Семинар 13 сентября

13 сентября в 18:00 состоится заседание семинара кафедры Высшей математики и математической физики, ПОМИ, ауд. 203.

Докладчик: Н.В. Смородина

Тема: Вероятностная аппроксимация оператора эволюции

Аннотация
Будет рассказано об аппроксимации в смысле сильной операторной сходимости оператора \(e^{-itH}\), где \(H=-\frac{1}{2}\,\frac{d^2}{dx^2}+V(x)\).
Потенциал \(V\) предполагается вещественным и ограниченным. Аппроксимирующие операторы имеют вид математических ожиданий функционалов от некоторого точечного случайного поля.

Семинар 6 сентября

6 сентября в 18:00 состоится заседание семинара кафедры Высшей математики и математической физики, ПОМИ, ауд. 203.

Докладчик: Виктор Иврий

Тема: Две спектральные задачи для оператора Лапласа

Аннотация
а) Асимптотика собственных значений квазиклассического Дирихле-в-Нейман оператора.

б) Асимптотика собственных значений дробной степени Лапласиана.

Моей целью будет рассказать общие основные идеи и их применение к двум этим задачам. В частности, я объясню почему принцип Бирмана-Швингера столь важен.

Семинар 24 мая

24 мая в 18:00 состоится заседание семинара кафедры Высшей математики и математической физики, ПОМИ, ауд. 203.

Докладчик: А.А. Комеч

Тема: Принцип единственности продолжения для оператора Дирака

Аннотация:
Доказан следующий результат о единственности продолжения для оператора Дирака:
Пусть \(u\) локально принадлежит пространству Соболева \(H^1\) в размерности \(n\ge 1\). Если \(D u\) почти всюду в некоторой открытой связной области ограничено функцией \(|V(x)u(x)|\)  и если \(u\) равна нулю на открытом подмножестве в этой области, то \(u\) равна нулю почти всюду во всей области. Здесь \(D\) — оператор Дирака, a \(V\) — матричнозначная функция, локально принадлежащая \(L^q\), \(q=n\) если размерность \(n\) отлична от двух, \(q>2\) если размерность равна двум. Результат является оптимальным (возможно, почти оптимальным в двумерии).
Результат был предсказан Давидом Джерисоном в 1986 году, был «доказан», а также был доказан что не может быть доказан.
Результат получен совместно с Набилем Буссаидом (Безансон).

Семинар 17 мая

17 мая в 18:00 состоится заседание семинара кафедры Высшей математики и математической физики, ПОМИ, ауд. 203.

Докладчик: Н.Д. Филонов

Тема: Оператор Максвелла в цилиндре с коэффициентами, не зависящими от продольной переменной

Аннотация
Рассмотрим оператор Максвелла в трехмерном цилиндре, сечение которого — ограниченная двумерная область с липшицевой границей. Предположим, что коэффициенты (диэлектрическая и магнитная проницаемости) — положительно-определенные матрицы-функции, зависящие только от поперечных переменных. Мы покажем, что
1) спектр оператора Максвелла абсолютно непрерывен,
2) геометрия спектра зависит от топологии сечения цилиндра.

Семинар 10 мая

10 мая в 18:00 состоится заседание семинара кафедры Высшей математики и математической физики, ПОМИ, ауд. 203.

Докладчик: Ф.В. Петров

Тема: Интеграл Сельберга и постоянные коэффициенты многочленов Лорана

Аннотация

Кратный интеграл
\[
\int_{[0,1]^n}\prod t_i^{\alpha-1}(1-t_i)^{\beta-1} \prod_{i<j} |t_i-t_j|^{2\gamma}=
\prod_{j=0}^{n-1} \frac{\Gamma(\alpha+j\gamma)\Gamma(\beta+j\gamma)\Gamma(1+(j+1)\gamma)}
{\Gamma(\alpha+\beta+(n+j-1)\gamma)\Gamma(1+\gamma)},
\]
обобщающий бета-функцию Эйлера, был вычислен Атье Сельбергом (1944). Он и его многочисленные вариации играют ключевую роль в теории случайных матриц, уравнениях Книжника-Замолодчикова, квантовой многочастичной задаче Калоджеро-Сазерленда, теории многомерных ортогональных многочленов. Такие интегралы тесно связаны со свободными членами произведений типа \(\prod_{i\ne j} (1-x_i/x_j)^{a(i,j)}\).
Цель доклада рассказать об этой связи о методе вычисления этих коэффициентов основанных на многомерной интерполяции.

Семинар 3 мая

3 мая в 18:00 состоится заседание семинара кафедры Высшей математики и математической физики, ПОМИ, ауд. 203.

Докладчик: А.А. Федотов

Тема: Квазиклассические асимптотики функций Малюженца

Аннотация
Пусть \(h\) — фиксированное положительное число. Мы будем обсуждать решения уравнения
\[
\sigma(z+h)=(1+e^{-iz})\sigma(z-h),\qquad\qquad (1)
\]
на комплексной плоскости переменной \(z\). Это уравнение введено в рассмотрение в работе В.Буслаева и А.Федотова (2001), где изучались решения разностных уравнений второго порядка с периодическими коэффициентами, интерес к которым возник в связи с задачами из физики твердого тела. Позже оказалось, что родственные уравнения возникали при исследовании разных аналитических задач. В теории дифракции хорошо известно уравнение Малюжинца \(\psi(z+h)=\cot(z/2+\pi/4)\psi(z-h)\). Его решения начали изучаться Малюжинцом в 1958 году. Родственные уравнения были введены и независимо изучались в работах Бобровникова и Фирсанова (1988), Фаддеева, Кашаева и Волкова (2001) и Ruigsenaars’a (2000). Решения всех этих уравнений связаны друг с другом простыми соотношениями, и мы ограничимся обсуждением (1). Мы опишем асимптотики решений этого уравнения при \(h\to0\). Поскольку формально \(f(x+h)=\exp(h\frac{d}{dx}) f(x)\), эти асимптотики естественно считать квазиклассическими.

Семинар 26 апреля

26 апреля в 18:00 состоится заседание семинара кафедры Высшей математики и математической физики, ПОМИ, ауд. 203.
Докладчик: А.В. Баданин (совместная работа с Е.Л. Коротяевым)
Тема: Операторы 4-го порядка с периодическими коэффициентами на оси.
Аннотация
Обзор результатов по спектральной теории операторов 4-го порядка с периодическими коэффициентами на оси, полученных авторами в серии работ, начиная с 2005 г.

Семинар 19 апреля

19 апреля в 18:00 состоится заседание семинара кафедры Высшей математики и математической физики, ПОМИ, ауд. 203.

Докладчик: А.А. Федотов

Тема: О Владимире Савельевиче Буслаеве (к 80-летию с его дня рождения)

Семинар 12 апреля

12 апреля в 18:00 состоится заседание семинара кафедры Высшей математики и математической физики, ПОМИ, ауд. 203.

Докладчик: Наталья Сабурова

Тема: Оператор Лапласа на периодических дискретных графах с волноводами

Аннотация
Рассматривается оператор Лапласа на периодических дискретных графах, возмущенных волноводами, т.е. графами, которые являются периодическими по одним направлениям, и конечными — по другим.
Известно, что спектр оператора Лапласа на невозмущенном периодическом графе представляет собой объединение конечного числа невырожденных зон, и, быть может, конечного числа собственных значений бесконечной кратности. Показывается, что спектр оператора Лапласа на возмущенном графе состоит из спектра невозмущенного оператора и дополнительного спектра, также представляющего собой объединение конечного числа зон. Получена локализация зон дополнительного спектра в терминах геометрических параметров графа. Найдены асимптотики зон дополнительного спектра при больших кратностях ребер возмущающего графа. Показано, что мера Лебега дополнительного спектра, возможное число его зон, а также их положение могут быть достаточно произвольными. Доказательство основано на разложении оператора в прямой интеграл и явном представлении оператора в слое. Результаты получены совместно с профессором Коротяевым Е.Л.

Семинар 29 марта

29 марта в 18:00 состоится заседание семинара кафедры Высшей математики и математической физики, ПОМИ, ауд. 203.

Докладчик: Н.В. Смородина

Тема: Об одной предельной теореме, связанной с вероятностным представлением решения задачи Коши для уравнения Шрёдингера.

Аннотация
Будет изложена предельная теорема о сходимости математических ожиданий функционалов от некоторого комплексного случайного блуждания к решению задачи Коши для одномерного невозмущенного уравнения Шрёдингера.