Семинар 4 октября

4 октября в 18:00 состоится заседание семинара кафедры Высшей математики и математической физики, ПОМИ, ауд. 203.

Докладчик: Федотов А.А.

Тема: Матрица монодромии для уравнения почти-Матье с малой константой связи

Аннотация
В рамках метода монодромизации — перенормировочного подхода, предложенного В.С.Буслаевым и А.А.Федотовым для анализа на вещественной оси разностных уравнений с периодическими коэффициентами, — исследуется оператор почти-Матье с малой константой связи. Описаны асимптотики первой матрицы монодромии и полученные с их помощью асимптотики последовательности спектральных лакун.

Семинар 27 сентября

27 сентября в 18:00 состоится заседание семинара кафедры Высшей математики и математической физики, ПОМИ, ауд. 203.

Докладчик: Professor Dorje C. Brody, Brunel University London, Imperial College, London, UK

Тема: Hamiltonian for the Zeros of the Riemann Zeta Function

Аннотация
A Hamiltonian operator Hˆ is constructed with the property that if the eigenfunctions obey a suitable boundary condition, then the associated eigenvalues correspond to the nontrivial zeros of the Riemann zeta function. The classical limit of Hˆ is 2xp, which is consistent with the Berry-Keating conjecture. While Hˆ is not Hermitian in the conventional sense, iHˆ is PT symmetric with a broken PT symmetry, thus allowing for the possibility that all eigenvalues of Hˆ are real. A heuristic analysis is presented for the construction of the metric operator to define an inner-product space, on which the Hamiltonian is Hermitian. If the analysis presented here can be made rigorous to show that Hˆ is manifestly self-adjoint, then this implies that the Riemann hypothesis holds true.

Семинар 13 сентября

13 сентября в 18:00 состоится заседание семинара кафедры Высшей математики и математической физики, ПОМИ, ауд. 203.

Докладчик: Н.В. Смородина

Тема: Вероятностная аппроксимация оператора эволюции

Аннотация
Будет рассказано об аппроксимации в смысле сильной операторной сходимости оператора \(e^{-itH}\), где \(H=-\frac{1}{2}\,\frac{d^2}{dx^2}+V(x)\).
Потенциал \(V\) предполагается вещественным и ограниченным. Аппроксимирующие операторы имеют вид математических ожиданий функционалов от некоторого точечного случайного поля.

Семинар 6 сентября

6 сентября в 18:00 состоится заседание семинара кафедры Высшей математики и математической физики, ПОМИ, ауд. 203.

Докладчик: Виктор Иврий

Тема: Две спектральные задачи для оператора Лапласа

Аннотация
а) Асимптотика собственных значений квазиклассического Дирихле-в-Нейман оператора.

б) Асимптотика собственных значений дробной степени Лапласиана.

Моей целью будет рассказать общие основные идеи и их применение к двум этим задачам. В частности, я объясню почему принцип Бирмана-Швингера столь важен.

Семинар 24 мая

24 мая в 18:00 состоится заседание семинара кафедры Высшей математики и математической физики, ПОМИ, ауд. 203.

Докладчик: А.А. Комеч

Тема: Принцип единственности продолжения для оператора Дирака

Аннотация:
Доказан следующий результат о единственности продолжения для оператора Дирака:
Пусть \(u\) локально принадлежит пространству Соболева \(H^1\) в размерности \(n\ge 1\). Если \(D u\) почти всюду в некоторой открытой связной области ограничено функцией \(|V(x)u(x)|\)  и если \(u\) равна нулю на открытом подмножестве в этой области, то \(u\) равна нулю почти всюду во всей области. Здесь \(D\) — оператор Дирака, a \(V\) — матричнозначная функция, локально принадлежащая \(L^q\), \(q=n\) если размерность \(n\) отлична от двух, \(q>2\) если размерность равна двум. Результат является оптимальным (возможно, почти оптимальным в двумерии).
Результат был предсказан Давидом Джерисоном в 1986 году, был «доказан», а также был доказан что не может быть доказан.
Результат получен совместно с Набилем Буссаидом (Безансон).

Семинар 17 мая

17 мая в 18:00 состоится заседание семинара кафедры Высшей математики и математической физики, ПОМИ, ауд. 203.

Докладчик: Н.Д. Филонов

Тема: Оператор Максвелла в цилиндре с коэффициентами, не зависящими от продольной переменной

Аннотация
Рассмотрим оператор Максвелла в трехмерном цилиндре, сечение которого — ограниченная двумерная область с липшицевой границей. Предположим, что коэффициенты (диэлектрическая и магнитная проницаемости) — положительно-определенные матрицы-функции, зависящие только от поперечных переменных. Мы покажем, что
1) спектр оператора Максвелла абсолютно непрерывен,
2) геометрия спектра зависит от топологии сечения цилиндра.

Семинар 10 мая

10 мая в 18:00 состоится заседание семинара кафедры Высшей математики и математической физики, ПОМИ, ауд. 203.

Докладчик: Ф.В. Петров

Тема: Интеграл Сельберга и постоянные коэффициенты многочленов Лорана

Аннотация

Кратный интеграл
\[
\int_{[0,1]^n}\prod t_i^{\alpha-1}(1-t_i)^{\beta-1} \prod_{i<j} |t_i-t_j|^{2\gamma}=
\prod_{j=0}^{n-1} \frac{\Gamma(\alpha+j\gamma)\Gamma(\beta+j\gamma)\Gamma(1+(j+1)\gamma)}
{\Gamma(\alpha+\beta+(n+j-1)\gamma)\Gamma(1+\gamma)},
\]
обобщающий бета-функцию Эйлера, был вычислен Атье Сельбергом (1944). Он и его многочисленные вариации играют ключевую роль в теории случайных матриц, уравнениях Книжника-Замолодчикова, квантовой многочастичной задаче Калоджеро-Сазерленда, теории многомерных ортогональных многочленов. Такие интегралы тесно связаны со свободными членами произведений типа \(\prod_{i\ne j} (1-x_i/x_j)^{a(i,j)}\).
Цель доклада рассказать об этой связи о методе вычисления этих коэффициентов основанных на многомерной интерполяции.

Семинар 3 мая

3 мая в 18:00 состоится заседание семинара кафедры Высшей математики и математической физики, ПОМИ, ауд. 203.

Докладчик: А.А. Федотов

Тема: Квазиклассические асимптотики функций Малюженца

Аннотация
Пусть \(h\) — фиксированное положительное число. Мы будем обсуждать решения уравнения
\[
\sigma(z+h)=(1+e^{-iz})\sigma(z-h),\qquad\qquad (1)
\]
на комплексной плоскости переменной \(z\). Это уравнение введено в рассмотрение в работе В.Буслаева и А.Федотова (2001), где изучались решения разностных уравнений второго порядка с периодическими коэффициентами, интерес к которым возник в связи с задачами из физики твердого тела. Позже оказалось, что родственные уравнения возникали при исследовании разных аналитических задач. В теории дифракции хорошо известно уравнение Малюжинца \(\psi(z+h)=\cot(z/2+\pi/4)\psi(z-h)\). Его решения начали изучаться Малюжинцом в 1958 году. Родственные уравнения были введены и независимо изучались в работах Бобровникова и Фирсанова (1988), Фаддеева, Кашаева и Волкова (2001) и Ruigsenaars’a (2000). Решения всех этих уравнений связаны друг с другом простыми соотношениями, и мы ограничимся обсуждением (1). Мы опишем асимптотики решений этого уравнения при \(h\to0\). Поскольку формально \(f(x+h)=\exp(h\frac{d}{dx}) f(x)\), эти асимптотики естественно считать квазиклассическими.

Семинар 26 апреля

26 апреля в 18:00 состоится заседание семинара кафедры Высшей математики и математической физики, ПОМИ, ауд. 203.
Докладчик: А.В. Баданин (совместная работа с Е.Л. Коротяевым)
Тема: Операторы 4-го порядка с периодическими коэффициентами на оси.
Аннотация
Обзор результатов по спектральной теории операторов 4-го порядка с периодическими коэффициентами на оси, полученных авторами в серии работ, начиная с 2005 г.

Семинар 19 апреля

19 апреля в 18:00 состоится заседание семинара кафедры Высшей математики и математической физики, ПОМИ, ауд. 203.

Докладчик: А.А. Федотов

Тема: О Владимире Савельевиче Буслаеве (к 80-летию с его дня рождения)