professor, Doctor of Sciences
email: fedotov.s@mail.ru a.fedotov@spbu.ru
PURE SPBU
Directions of research
- Asymptotic methods of mathematical physics (quasi-classical, short-wave and adiabatic asymptotics)
- Spectral theory of ergodic Schr\»odinger operators
- Analytic theory of difference equations on the complex plane
Basic Research papers
- Fedotov A. and Sandomirskiy F. An Exact Renormalization Formula for the Maryland Model. Communications in Mathematical Physics, 334(2): 1083-1099, 2015.
- Fedotov Alexander and Klopp Frederic. An exact renormalization formula for Gaussian exponential sums and applications. American Journal of Mathematics, 134(3):711-748, 2012.
- Fedotov A. and Klopp F. Strong resonant tunneling, level repulsion and spectral type for one-dimensional adiabatic quasi-periodic Schrodinger operators. Annales Scientifiques De L’Ecole Normale Superieure, 38(6):889-950, 2005.
- Fedotov A., Klopp F. Anderson transitions for a family of almost periodic Schrodinger equations in the adiabatic case. Communications in Mathematical Physics 227(1):1-92, 2002.
- Fedotov A. and Klopp F. A complex WKB method for adiabatic problems. Asymptotic Analysis, 27(3-4): 219-264, 2001.
- Buslaev V. and Fedotov A. On the difference equations with periodic coefficients. Advances in Theoretical and Mathematical Physics 5(6):1-45, 2001.
- Buslaev, V. and Fedotov A. The Harper equation: monodromization without quasiclassics. St. Petersburg Math. J. 8(2):231-254, 1997.
- Buslaev, V., and Fedotov, A.. The monodromization and Harper equation. Séminaire Équations aux dérivées partielles (dit «Goulaouic-Schwartz») 1993-1994: 1-21, http://eudml.org/doc/112086.
- Buslaev V. S., Fedotov, A. A. The complex WKB method for the Harper equation. St. Petersburg Math. J. 6(3): 495-517, 1995.
- Buslaev, V. S.; Fedotov, A. A. Influence jf a horizontal inhomogeneity layer on sound-propagation in a deep-sea under non-adiabatic conditions. Soviet Physics Acoustics, 32(1): 16-18, 1986.
See also reviews:
- Fedotov A. Monodromization method in the theory of almost-periodic equations. St Petersburg Mathematical Journal, 25(2):303-325, 2014.
- Fedotov A. Complex WKB method for adiabatic perturbations of a periodic Schrödinger operator. Journal of Mathematical Sciences, 173(3): 320-339, 2011.
- Fedotov A. Adiabatic almost-periodic Schrödinger operators. Journal of Mathematical Sciences Volume: 173(3): 299-319, 2011.
Teaching
- Lectures «Calculus» for the 2st year students: integration in \({\mathbb R}^n\), differetial forms, differential equations, Fourier analysis, calculus of variations
- Facultative lectures «Introduction to the mathematical theory of chaos»
- Lectures «Spectral theory of periodic and ergodic operators» for Master students