Dirichlet to Neumann operator on differential forms

Mikhail Belishev a,∗,1, Vladimir Sharafutdinov b,2

a Petersburg Department of Steklov Institute of Mathematics, 27, Fontanka, St. Petersburg, 191023, Russia
b Sobolev Institute of Mathematics, 4, Koptjug Avenue, Novosibirsk, 630090, Russia

Received 21 September 2005

Abstract

We define the Dirichlet to Neumann operator on exterior differential forms for a compact Riemannian manifold with boundary and prove that the real additive cohomology structure of the manifold is determined by the DN operator. In particular, an explicit formula is obtained which expresses Betti numbers of the manifold through the DN operator. We express also the Hilbert transform through the DN map. The Hilbert transform connects boundary traces of conjugate co-closed forms.

© 2006 Published by Elsevier Masson SAS.

1. Introduction

Throughout the paper, M is a connected compact oriented Riemannian C^∞-manifold of dimension n with nonempty boundary ∂M. Let $\Delta : C^\infty(M) \to C^\infty(M)$ be the Laplace–Beltrami operator. The classical Dirichlet to Neumann (DN) map $\Lambda_{\text{cl}} : C^\infty(\partial M) \to C^\infty(\partial M)$ is defined by $\Lambda_{\text{cl}} \phi = \partial \omega / \partial v$, where ω is the solution to the Dirichlet problem

\begin{align}
\Delta \omega &= 0, \\
\omega |_{\partial M} &= \phi
\end{align}

(1.1)

and v is the unit outer normal to the boundary. We use the term “classical DN map” and notation Λ_{cl} in order to make a distinction between this operator and the generalization Λ defined below.

* Corresponding author.

E-mail addresses: belishev@pdmi.ras.ru (M. Belishev), sharaf@math.nsc.ru (V. Sharafutdinov).

1 Supported by RFBR grants 05-01-00936 and NS-3.1.4733.

2 Supported by RFBR grant 05-01-00611 and DFG–RFBR grant 04-01-04000.

0007-4497/$ – see front matter © 2006 Published by Elsevier Masson SAS.
doi:10.1016/j.bulsci.2006.11.003
In the scope of inverse problems of reconstructing a manifold from boundary measurements, the following question is of great theoretical and applied interest: to what extent are the topology and geometry of \(M \) determined by the DN map? It is proved in the two-dimensional case that \(M \) is determined by \(\Lambda_{\text{cl}} \) up to a conformal equivalence \([1,5]\). There is the conjecture that \(\Lambda_{\text{cl}} \) determines \(M \) up to an isometry in the case of \(n \geq 3 \). The latter is proved for real analytic manifolds \([6]\). In the general case, it is proved that the boundary \(C^\infty \)-jet of the metric is determined by \(\Lambda_{\text{cl}} \) for \(n \geq 3 \) \([7]\).

In \([1]\), an explicit formula is obtained which expresses the Euler characteristic of \(M \) through \(\Lambda_{\text{cl}} \) in the case of a two-dimensional \(M \) with a connected boundary. The Euler characteristic completely determines the topology of \(M \) in the latter case. In the three-dimensional case, the vector DN map \(\vec{\Lambda} : C^\infty (T(\partial M)) \to C^\infty (T(\partial M)) \) is defined on the space of vector fields in \([2]\), and some formulas are obtained which express the Betti numbers \(\beta_1(M) \) and \(\beta_2(M) \) in terms of \(\Lambda_{\text{cl}} \) and \(\vec{\Lambda} \).

Here we present a multidimensional generalization of the latter results. We define a DN map on the space of differential forms of all degrees and express Betti numbers in terms of the map.

2. Preliminaries

Here, following \([8]\) and mostly adhering to notations of this book, we recall some known facts on differential forms.

Let \(\Omega^k(M) \) be the space of smooth real exterior differential forms of degree \(k \) and \(\Omega(M) = \bigoplus_{k=0}^{n} \Omega^k(M) \), the graded algebra of all forms. We use the following standard operators on \(\Omega(M) \): the differential \(d \), codifferential \(\delta \), Laplace operator \(\Delta = d\delta + \delta d \), and Hodge star \(\star \).

Recall the relations
\[
\star \star = (-1)^{(n-k)}(n-k), \quad \star \delta = (-1)^k d \star, \quad \star d = (-1)^{k+1} \delta \star \quad \text{on} \quad \Omega^k(M).
\]

The \(L^2 \)-product on \(\Omega(M) \) is defined by \((\alpha, \beta) = \int_M \alpha \wedge \star \beta \) under the agreement that \(\int_M \phi = 0 \) for \(\phi \in \Omega^k(M) \) with \(k < n \). Recall Green’s formula
\[
(d\alpha, \beta) - (\alpha, d\beta) = \int_{\partial M} i^*(\alpha \wedge \star \beta),
\]
where \(i : \partial M \to M \) is the embedding. For \(\alpha \in \Omega(M) \), the form \(i^*\alpha \) will be sometimes called the boundary trace of \(\alpha \).

Elements of the space
\[
\mathcal{H}^k(M) = \{ \lambda \in \Omega^k(M) | d\lambda = 0, \delta\lambda = 0 \}
\]
are named harmonic fields. Recall the \(L^2 \)-orthogonal Hodge–Morrey decomposition
\[
\Omega^k(M) = \mathcal{E}^k(M) \oplus \mathcal{C}^k(M) \oplus \mathcal{H}^k(M).
\]

Here
\[
\mathcal{E}^k(M) = \{ d\alpha | \alpha \in \Omega^{k-1}(M), i^*\alpha = 0 \}
\]
and
\[
\mathcal{C}^k(M) = \{ \delta\alpha | \alpha \in \Omega^{k+1}(M), i^*(\star \alpha) = 0 \}.
\]
There are two finite dimensional subspaces distinguished in $\mathcal{H}^k(M)$

$$\mathcal{H}^k_D(M) = \{ \lambda \in \mathcal{H}^k(M) \mid i^*\lambda = 0 \},$$

$$\mathcal{H}^k_N(M) = \{ \lambda \in \mathcal{H}^k(M) \mid i^*(\lambda) = 0 \}$$

whose elements are named Dirichlet and Neumann harmonic fields respectively. Dimensions of these spaces are expressed by

$$\dim \mathcal{H}^k_N(M) = \dim \mathcal{H}^k_D(M) = \beta_k(M),$$

where $\beta_k(M)$ is the kth Betti number. There are two L^2-orthogonal Friedrichs decompositions

$$\mathcal{H}^k(M) = \mathcal{H}^k_D(M) \oplus \mathcal{H}^k_{\text{co}}(M),$$

$$\mathcal{T}^k(M) = \mathcal{H}^k_N(M) \oplus \mathcal{H}^k_{\text{ex}}(M).$$

Here

$$\mathcal{H}^k_{\text{ex}}(M) = \{ \lambda \in \mathcal{H}^k(M) \mid \lambda = d\alpha \},$$

$$\mathcal{H}^k_{\text{co}}(M) = \{ \lambda \in \mathcal{H}^k(M) \mid \lambda = d^{\ast}\alpha \}$$

are the spaces of exact harmonic, and co-exact harmonic fields.

The operator \ast maps the space $\mathcal{H}^k_D(M)$ isomorphically onto $\mathcal{H}^k_{\text{ex}}(M)$. Introduce the trace spaces

$$i^*\mathcal{H}^k(M) = \{ i^*\lambda \mid \lambda \in \mathcal{H}^k(M) \},$$

$$i^*\mathcal{H}^k_N(M) = \{ i^*\lambda_N \mid \lambda_N \in \mathcal{H}^k_N(M) \}.$$

A Neumann harmonic field λ_N is uniquely determined by its trace $i^*\lambda_N$. Therefore the dimension of the space $i^*\mathcal{H}^k_N(M)$ is equal to $\beta_k(M)$. Let us prove the equality

$$i^*\mathcal{H}^k(M) = \mathcal{H}^k_D(M) + i^*\mathcal{H}^k_N(M).$$

Indeed, any harmonic field $\lambda \in \mathcal{H}^k(M)$ can be represented in the form

$$\lambda = d\eta + \lambda_N, \quad \lambda_N \in \mathcal{H}^k_{\text{co}}(M)$$

by the second Friedrichs decomposition. This implies

$$i^*\lambda = i^*d\eta + i^*\lambda_N = d(i^*\eta) + i^*\lambda_N.$$

Conversely, for $\varphi \in \Omega^{k-1}(\partial M)$ and $\lambda_D \in \mathcal{H}^{k+1}(M)$,

$$\int_{\partial M} d\varphi \wedge i^*(\lambda_D) = \int_{\partial M} d(\varphi \wedge i^*(\lambda_D)) = 0.$$

Thus, the form $\alpha = d\varphi$ satisfies

$$d\alpha = 0 \quad \text{and} \quad \int_{\partial M} \alpha \wedge i^*(\lambda_D) = 0 \quad \forall \lambda_D \in \mathcal{H}^{k+1}(M).$$

By Theorem 3.2.5 of [8], (2.2) is the necessary and sufficient condition for the existence of such $\lambda \in \mathcal{H}^k(M)$ that $\alpha = i^*\lambda$.

By the first of Friedrichs decompositions, a harmonic field $\lambda \in \mathcal{H}^k(M)$ can be represented as

$$\lambda = \delta\alpha + \lambda_D, \quad \lambda_D \in \mathcal{H}^k_D(M).$$

We will need the following remark: in the representation, the form α can be chosen such that

$$d\alpha = 0 \quad \text{and} \quad \Delta\alpha = 0.$$

Indeed, first consider representation (2.3) with some α and decompose α by Hodge–Morrey

$$\alpha = d\beta + \delta\gamma + \lambda', \quad d\lambda' = \delta\lambda' = 0.$$
This implies $\delta \alpha = \delta d \beta$. Therefore, in (2.3), α can be replaced with the form $\tilde{\alpha} = \delta d \beta$ which satisfies $d \tilde{\alpha} = 0$. Next, if the form α in (2.3) satisfies $d \alpha = 0$, then it satisfies also the Eq. $\Delta \alpha = 0$ as is seen by applying the operator d to Eq. (2.3). A similar remark is valid on the second Friedrichs decomposition.

3. DN operator

For any $0 \leq k \leq n - 1$, the DN operator $\Lambda : \Omega^k(\partial M) \to \Omega^{n-k-1}(\partial M)$ (3.1) is defined as follows. Given $\varphi \in \Omega^k(\partial M)$, the boundary value problem

$$\begin{cases}
\Delta \omega = 0,
\iota^* \omega = \varphi,
\iota^* (\delta \omega) = 0
\end{cases}$$

(3.2)

is solvable, see Lemma 3.4.7 of [8]. The solution $\omega \in \Omega^k(M)$ is unique up to an arbitrary Dirichlet harmonic field $\lambda_D \in \mathcal{H}^k_D(M)$. Therefore the form $\Lambda \varphi = j^*(\delta^* \omega) = (-1)^{k+1} j^*(\delta \ast \omega)$ (3.3) is independent of the choice of the solution ω and Λ is a well defined operator.

In the scalar case of $k = 0$, our definition is equivalent to the classical one. Indeed, in this case the boundary value problem (3.2) coincides with (1.1) and definition (3.3) gives

$$\Lambda \varphi = \frac{\partial \omega}{\partial \nu} \mu_\partial \quad (\varphi \in \Omega^0(\partial M)),$$

where $\mu_\partial \in \Omega^{n-1}(\partial M)$ is the boundary volume form. Thus, in the case of $k = 0$, our operator Λ differs from the classical operator Λ_{cl} by the presence of the factor μ_∂. However, some authors prefer to consider the form-valued operator $\Lambda : \Omega^0(\partial M) \to \Omega^{n-1}(\partial M)$, see for example [9].

The boundary value problem (3.2) can be written in a slightly different form as the following statement shows.

Lemma 3.1. Given $\varphi \in \Omega^k(\partial M)$, let $\omega \in \Omega^k(M)$ be a solution to the boundary value problem (3.2). Then $d \omega \in \mathcal{H}^{k+1}(M)$ and $\delta \omega = 0$. In particular, (3.2) is equivalent to the boundary value problem

$$\begin{cases}
\Delta \omega = 0,
\delta \omega = 0,
\iota^* \omega = \varphi.
\end{cases}$$

(3.4)

Proof. Let $\lambda = d \omega \in \Omega^{k+1}(M)$. We state that λ is a harmonic field. Indeed, $d \lambda = dd \omega = 0$. Since d and Δ commute,

$$\Delta \lambda = \Delta d \omega = d \Delta \omega = 0.$$

The boundary conditions

$$i^* \delta \lambda = i^* \delta d \omega = -i^* d \delta \omega = -d (i^* \delta \omega) = 0$$

and

$$i^* (\delta^* \lambda) = i^* (\delta^* d \omega) = 0$$
are satisfied. Thus, λ solves the boundary value problem
\[
\Delta \lambda = 0, \quad i^* (\star d\lambda) = 0, \quad i^* \delta \lambda = 0.
\]
This implies, with the help of Proposition 3.4.5(iv) of [8], that λ is a harmonic field.

Let now $\varepsilon = \delta \omega$. Then ε is a harmonic field. Indeed, $\delta \varepsilon = \delta \delta \omega = 0$ and $d \varepsilon = d \delta \omega = -\delta d \omega = -\delta \lambda = 0$. Since $i^* \varepsilon = 0$ by the second of the boundary conditions (3.2), ε is a Dirichlet harmonic field. We have thus proved that $\varepsilon = \delta \omega$ is a co-exact harmonic field and it is a Dirichlet harmonic field. This implies, by the first Friedrichs decomposition, that $\varepsilon = 0$. \hfill \Box

The operator Λ is nonnegative in the following sense: the integral
\[
\int_{\partial M} \varphi \wedge \Lambda \varphi
\]
is nonnegative for any $\varphi \in \Omega(\partial M)$. This follows from the next statement. Given two forms $\varphi, \psi \in \Omega(\partial M)$, let ω and ε be the corresponding solutions to the boundary value problem (3.2), i.e.,
\[
\begin{cases}
\Delta \omega = 0, \\
i^* \omega = \varphi, \\
i^* (\delta \omega) = 0,
\end{cases}
\quad
\begin{cases}
\Delta \varepsilon = 0, \\
i^* \varepsilon = \psi, \\
i^* (\delta \varepsilon) = 0.
\end{cases}
\tag{3.5}
\]
Then
\[
\int_{\partial M} \varphi \wedge \Lambda \psi = \int_{\partial M} \psi \wedge \Lambda \varphi = (d \omega, d \varepsilon) + (\delta \omega, \delta \varepsilon).
\tag{3.6}
\]
Indeed, by Green’s formula
\[
(d \omega, d \varepsilon) = (\omega, \delta d \varepsilon) + \int_{\partial M} (i^* \omega) \wedge (i^* d \varepsilon),
\]
\[
(\delta \omega, \delta \varepsilon) = (\omega, d \delta \varepsilon) - \int_{\partial M} (i^* \delta \varepsilon) \wedge (i^* \omega).
\]
Summing these equalities and using (3.5), we obtain (3.6).

To find the dual operator Λ^*, we write the first of equalities (3.6) in the form
\[
(\varphi, \star_\partial \Lambda \psi) = (\psi, \star_\partial \Lambda \varphi),
\tag{3.7}
\]
where $\star_\partial : \Omega(\partial M) \to \Omega(\partial M)$ is the Hodge star on ∂M. Setting $\psi = \star_\partial \psi'$ on (3.7), we obtain
\[
(\varphi, \star_\partial \Lambda \star_\partial \psi') = (\star_\partial \psi', \star_\partial \Lambda \varphi) = (\psi', \Lambda \varphi).
\]
The last equality holds because \star_∂ is the L^2-isometry of $\Omega(\partial M)$. We have thus obtained
\[
\Lambda^* = \star_\partial \Lambda \star_\partial.
\tag{3.8}
\]

The kernel and range of the operator Λ are described by the following

Lemma 3.2. The kernel of Λ coincides with the range of Λ. A form $\varphi \in \Omega^k(\partial M)$ belongs to $\text{Ker} \Lambda = \text{Ran} \Lambda$ if and only if it is the trace of a harmonic field, i.e., $\varphi = i^* \lambda$ for $\lambda \in \mathcal{H}^k(M)$.

Please cite this article as: M. Belishev, V. Sharafutdinov, Dirichlet to Neumann operator on differential forms, Bull. Sci. math. (2007), doi:10.1016/j.bulsci.2006.11.003
Proof. We first prove the equality
\[\text{Ker } \Lambda = i^*H(M), \]
where \(H(M) = \bigoplus_{k=0}^n H^k(M) \) is the space of all harmonic fields. If \(\varphi \in \text{Ker } \Lambda \) and \(\omega \) is a solution to the boundary value problem (3.2), then \(\varphi = i^*\omega \) and
\[(d\omega, d\omega) + (\delta\omega, \delta\omega) = \int_{\partial M} \varphi \wedge \Lambda\varphi = 0 \]
by (3.6). This means that \(\omega \in H^k(M) \). Conversely, if \(\varphi = i^*\omega \) for \(\omega \in H(M) \), then \(\omega \) is a solution to the boundary value problem (3.2) and \(\Lambda \varphi = i^*(\imath d\omega) = 0 \).

Next, we prove the equality
\[\text{Ran } \Lambda = i^*H(M). \]
Let \(\psi \in \text{Ran } \Lambda, \psi = \Lambda \varphi \). This means the existence of a solution \(\omega \in \Omega(M) \) to the boundary value problem
\[\begin{aligned}
\Delta \omega &= 0, \\
\delta \omega &= 0, \\
i^*\omega &= \varphi, \\
i^*(\imath d\omega) &= \psi.
\end{aligned} \]
By Lemma 3.1, \(d\omega \) is a harmonic field. Therefore \(\imath d\omega \) is a harmonic field too. Hence \(\psi = i^*(\imath d\omega) \in i^*H(M) \). Conversely, let \(\psi \in i^*H(M) \), i.e.,
\[\psi = i^*\lambda, \quad \lambda \in H(M). \quad (3.9) \]
By the second Friedrichs decomposition, the harmonic field \(\imath \lambda \) can be represented as
\[\imath \lambda = d\omega + \lambda_N, \quad (3.10) \]
where \(\lambda_N \) is a Neumann harmonic field and \(\omega \) is chosen such that (see the remark at the end of Section 2)
\[\delta \omega = 0, \quad \Delta \omega = 0. \]
This implies
\[\Lambda(i^*\omega) = i^*(\imath d\omega). \]
Applying the operator \(i^*\imath \) to (3.10), we obtain
\[i^*(\imath d\omega) = \pm i^*\lambda. \]
Two last equations imply
\[i^*\lambda = \pm \Lambda(i^*\omega). \]
Comparing this equality with (3.9), we see that \(\psi = \Lambda(\pm i^*\omega) \), i.e., \(\psi \in \text{Ran } \Lambda \).

Corollary 3.3. The operator \(\Lambda \) possesses the following properties:
\[\Lambda d = 0, \quad d\Lambda = 0, \quad \Lambda^2 = 0. \quad (3.11) \]
Proof. The first of equalities (3.11) means that any exact form is the trace of a harmonic field. This is true by (2.1). The second of equalities (3.11) is equivalent to the obvious fact: the trace of a harmonic field is a closed form. The last of equalities (3.11) follows from the relation \(\text{Ker } \Lambda \subseteq \text{Ran } \Lambda \).
Corollary 3.4. The operator \(d \Lambda^{-1} \) is well defined on boundary traces of harmonic fields, i.e., the equation \(\Lambda \phi = \psi \) has a solution \(\phi \) for any \(\psi \in i^*H(M) \), and \(d\phi \) is uniquely determined by \(\psi \). In particular, the operator \(d \Lambda^{-1} : \Omega(\partial M) \to \Omega(\partial M) \) is well defined.

Proof. The boundary trace \(\psi \in i^*H(M) \) of a harmonic field belongs to \(\text{Ran} \Lambda \) by Lemma 3.2, so the equation \(\Lambda \phi = \psi \) is solvable. If \(\Lambda \phi_1 = \Lambda \phi_2 \), then the form \(\phi_1 - \phi_2 \) is closed since it is the trace of a harmonic field. Therefore \(d\phi_1 = d\phi_2 \). An exact form is the trace of a harmonic field by (2.1). □

Remark 1. There is some freedom in the definition of the DN operator. One can define the DN map as

\[\tilde{\Lambda} = (-1)^kn \star \partial \Lambda : \Omega^k(\partial M) \to \Omega^k(\partial M). \]

This operator preserves the degree of a form. Moreover, it is a nonnegative self-dual operator, i.e., \(\langle \Lambda \phi, \phi \rangle \geq 0 \) and \(\tilde{\Lambda}^* = \tilde{\Lambda} \) as is seen from (3.6) and (3.8). Thus, the operator \(\tilde{\Lambda} \) has more conventional properties than \(\Lambda \). Just \(\tilde{\Lambda} \) is used in [2]. Nevertheless, we have chosen \(\Lambda \) in our definition of the DN map since we share the opinion by J. Sylvester [9]: the DN operator should transform a \(k \)-form to an \((n-k-1) \)-form. The operators \(\tilde{\Lambda} \) and \(\tilde{\Lambda} \) are equivalent in the following sense: given the Riemannian manifold \(\partial M \), we can express \(\tilde{\Lambda} \) through \(\Lambda \) and vise versa.

Remark 2. Quite different definition of the DN map is chosen in [4]. By this definition, the DN operator maps a form \(\phi \in \Omega^k(M)|_{\partial M} \) to \(\partial \omega / \partial \nu \), where \(\omega \) is the solution to the boundary value problem (1.1). The main result of [4] is that the full symbol of the latter DN map \(\Omega^k(M)|_{\partial M} \to \Omega^k(M)|_{\partial M} \) determines the boundary \(C^\infty \)-jet of the metric for any \(k \).

4. Betti numbers

If we know the kernel of \(\Lambda \), we can write down some low bounds for Betti numbers as is seen from the following

Theorem 4.1. Let \(\Lambda_k \) be the restriction of the operator \(\Lambda \) to \(\Omega^k(\partial M) \). The kernel \(\text{Ker} \Lambda_k \) contains the space \(\mathcal{E}^k(\partial M) \) of exact forms and

\[\dim[\text{Ker} \Lambda_k / \mathcal{E}^k(\partial M)] \leq \min\{\beta_k(M), \beta_k(\partial M)\}. \]

Proof. Consider the Hodge decomposition for \(\partial M \)

\[\Omega^k(\partial M) = C^k(\partial M) \oplus \mathcal{E}^k(\partial M) \oplus \mathcal{H}^k(\partial M). \]

The space of closed forms coincides with the sum of two last summands of the decomposition. The kernel \(\text{Ker} \Lambda_k \) consists of closed forms by Lemma 3.2 and contains all exact forms by (3.11), i.e.,

\[\mathcal{E}^k(\partial M) \subset \text{Ker} \Lambda_k \subset \mathcal{E}^k(\partial M) \oplus \mathcal{H}^k(\partial M). \]

This implies

\[\dim[\text{Ker} \Lambda_k / \mathcal{E}^k(\partial M)] \leq \dim \mathcal{H}^k(\partial M) = \beta_k(\partial M). \]

By Lemma 3.2 and (2.1),

\[\text{Ker} \Lambda_k = \mathcal{E}^k(\partial M) + j^*\mathcal{H}^k_N(M). \]
Therefore
\[\dim \left(\text{Ker} \Lambda_k / \mathcal{E}^k(\partial M) \right) \leq \dim \mathcal{H}_N^k(M) = \beta_k(M). \]

The main result of the article is the following

Theorem 4.2. For any \(0 \leq k \leq n - 1 \), the range of the operator
\[\Lambda + (-1)^{kn+k+n} d \Lambda^{-1} d : \Omega^k(\partial M) \to \Omega^{n-k-1}(\partial M) \]
is \(i^* \mathcal{H}_N^{n-k-1}(M) \) and
\[\dim \text{Ran} \left[\Lambda + (-1)^{kn+k+n} d \Lambda^{-1} d \right] = \beta_{n-k-1}(M). \]

Proof. We have to prove the equality
\[(\Lambda + (-1)^{kn+k+n} d \Lambda^{-1} d) \Omega^k(\partial M) = i^* \mathcal{H}_N^{n-k-1}(M). \] (4.1)

Given \(\varphi \in \Omega^k(\partial M) \), let \(\omega \in \Omega^k(M) \) be a solution to the boundary value problem (3.2). By Lemma 3.1, \(d \omega \in \mathcal{H}^{k+1}(M) \). We apply the first Friedrichs decomposition to \(d \omega \)
\[d \omega = \delta \alpha + \lambda_D, \quad \text{where} \ \lambda_D \in \mathcal{H}_D^{k+1}(M). \] (4.2)

As is mentioned at the end of Section 2, the form \(\alpha \in \Omega^{k+2}(M) \) can be chosen such that
\[d \alpha = 0, \quad \Delta \alpha = 0. \] (4.3)

We set \(\beta = \star \alpha \in \Omega^{n-k-2}(M). \) (4.3) implies
\[\delta \beta = 0, \quad \Delta \beta = 0. \] (4.4)

Substituting the value \(\alpha = (-1)^{k(n-k)} \star \beta \) into (4.2), we have
\[d \omega = (-1)^{k(n-k)} \delta \star \beta + \lambda_D. \] (4.5)

Apply the operator \(i^* \) to Eq. (4.5)
\[i^*(d \omega) = (-1)^{k(n-k)} i^*(\delta \star \beta). \] (4.6)

Using the relations
\[i^*(d \omega) = d(i^* \omega) = d \varphi \]
and
\[\delta \star \beta = (-1)^{n-k-1} \star d \beta, \]
we rewrite (4.6) in the form
\[d \varphi = (-1)^{kn+n+1} i^*(\star d \beta). \] (4.7)

Formulas (4.4) and (4.7) mean that
\[d \varphi = (-1)^{kn+n+1} \Lambda i^* \beta. \] (4.8)

Next, we apply the operator \(\star \) to Eq. (4.5)
\[\star d \omega = (-1)^{k(n-k)} \delta \star \beta + \star \lambda_D \]
and take the restriction to the boundary
\[i^*(\star d\omega) = (-1)^{k(n-k)}i^*(\star \delta \star \beta) + i^*(\star \lambda_D). \] (4.9)

The left-hand side of this formula is equal to \(\Lambda \varphi \). Using the relation
\[\star \delta \star \beta = (-1)^{kn} d\beta, \]
we transform the first term on the right-hand side of (4.9) as follows:
\[i^*(\star \delta \star \beta) = (-1)^{kn} i^* d\beta = (-1)^{kn} d(i^* \beta). \]

Thus, (4.9) is equivalent to the equation
\[\Lambda \varphi = (-1)^k d(i^* \beta) + i^*(\star \lambda_D). \] (4.10)

The form \(i^* \beta \) can be eliminated from the system of Eqs. (4.8) and (4.10). Indeed, (4.8) implies
with the help of Corollary 3.3
\[d(i^* \beta) = (-1)^{kn+n+1} (d\Lambda^{-1} d) \varphi. \]
Inserting this expression into (4.10), we obtain
\[(\Lambda + (-1)^{kn+k+n} d\Lambda^{-1} d) \varphi = i^*(\star \lambda_D). \]

We have thus proved that the left-hand side of (4.1) is a subset of the right-hand side.

To prove the converse inclusion, we first recall that
\[H^k_D(M) \cap H^k_N(M) = 0. \]
Together with Friedrichs decompositions, this implies that
\[H^k(M) = H^k_{\text{ex}}(M) + H^k_{\text{co}}(M), \]
i.e., a harmonic field can be represented as a sum of exact and co-exact harmonic fields.

Given \(\lambda_N \in H^{n-k-1}_N(M) \), the representation
\[\lambda_N = d\alpha + \delta\beta \] (4.11)
exists by the remark of the previous paragraph. The forms \(\alpha \) and \(\beta \) can be chosen such that
\[\delta\alpha = 0, \quad \Delta\alpha = 0 \] (4.12)
and
\[d\beta = 0, \quad \Delta\beta = 0. \] (4.13)

The latter statement is proved by the same argument as one used at the end of Section 2.

We set
\[\omega = (-1)^{kn+1} \star \beta, \quad \varepsilon = (-1)^{kn+k+n} \alpha. \]
Relations (4.12)–(4.13) imply
\[\delta \omega = 0, \quad \Delta \omega = 0, \] (4.14)
\[\delta \varepsilon = 0, \quad \Delta \varepsilon = 0, \] (4.15)
and Eq. (4.11) is rewritten in the form
\[\lambda_N = \star d\omega + (-1)^{kn+k+n} d\varepsilon. \] (4.16)
Applying the operator \star to the latter equation, we obtain
\begin{equation}
\star\lambda_N = (-1)^{kn+k+n}(\star d\varepsilon - d\omega).
\end{equation}

We define forms $\varphi, \psi \in \Omega(\partial M)$ by
\begin{equation}
\varphi = i^*\omega, \quad \psi = i^*\varepsilon.
\end{equation}

Restricting Eq. (4.16) to the boundary, we obtain
\begin{equation}
i^*\lambda_N = i^*(\star d\omega) + (-1)^{kn+k+n}d(i^*\varepsilon).
\end{equation}

Eqs. (4.14) and the first of equalities (4.18) mean that $i^*(\star d\omega) = \Lambda\varphi$. Therefore (4.19) can be rewritten as
\begin{equation}
i^*\lambda_N = \Lambda\varphi + (-1)^{kn+k+n}d(i^*\varepsilon).
\end{equation}

On the other hand, restricting Eq. (4.17) to the boundary, we obtain
\begin{equation}
i^*(\star d\varepsilon) = d(i^*\omega).
\end{equation}

Eqs. (4.15) and the second of equalities (4.18) mean that $i^*(\star d\varepsilon) = \Lambda\psi$. Therefore (4.21) can be rewritten as
\begin{equation}
\Lambda\psi = d\varphi.
\end{equation}

Finally, we eliminate the form ψ from the system of Eqs. (4.20) and (4.22) with the help of Corollary 3.3 and obtain
\begin{equation}
i^*\lambda_N = (\Lambda + (-1)^{kn+k+n}d\Lambda^{-1}d)\varphi.
\end{equation}

5. Hilbert transform

One of equivalent definitions of the classical Hilbert transform T on the unit circle $S = \{e^{i\theta}\}$ is as follows. Let $f = \varepsilon + i\omega$ be a holomorphic function in the disc $\{|re^{i\theta}| 0 \leq r \leq 1\}$ so that ω and ε are conjugate by Cauchy–Riemann: $d\omega = \star d\varepsilon$. If $\varphi = \omega|_S$ and $\psi = \varepsilon|_S$ are the boundary traces, then $T\frac{d\varphi}{d\theta} = \frac{d\psi}{d\theta}$.

Returning to the general case, we define the Hilbert transform as follows:
\begin{equation}
T = d\Lambda^{-1} : i^*H^k(M) \to i^*H^{n-k}(M).
\end{equation}

This is a well defined operator by Corollary 3.4. In particular, T is defined on exact boundary forms and maps such forms again to exact forms, i.e.,
\begin{equation}
T : \mathcal{E}^k(\partial M) \to \mathcal{E}^{n-k}(\partial M).
\end{equation}

In the present section, we use T as the operator on the space of exact boundary forms.

Let $\omega \in \Omega^k(M)$ and $\varepsilon \in \Omega^{n-k-2}(M)$ ($0 \leq k \leq n - 2$) be two co-closed forms,
\begin{equation}
\delta\omega = 0, \quad \delta\varepsilon = 0.
\end{equation}

The form ε is named the conjugate form of ω if
\begin{equation}
d\omega = \star d\varepsilon.
\end{equation}

This implies immediately that
\begin{equation}
\Delta\omega = 0, \quad \Delta\varepsilon = 0,
\end{equation}
and \((-1)^{kn+k+n+1}\omega\) is the conjugate form of \(\varepsilon\).

Not any \(\omega\) satisfying \(\Delta\omega = 0\) and \(\delta\omega = 0\) has a conjugate form. The remarkable fact is that the existence of the conjugate form can be checked in terms of the trace \(\varphi = i^*\omega\) and of the operator \(\Lambda\).

Theorem 5.1. A form \(\omega \in \Omega^k(M)\) satisfying \(\Delta\omega = 0\) and \(\delta\omega = 0\) has a conjugate form if and only if the trace \(\varphi = i^*\omega\) satisfies

\[
(\Lambda + (-1)^{kn+k+n}d\Lambda^{-1}d)\varphi = 0.
\]

In this case, if \(\varepsilon\) is the conjugate form of \(\omega\) and \(\psi = i^*\varepsilon\), then

\[
T \varphi = d\psi.
\]

Proof. **Necessity.** Let a co-closed form \(\omega \in \Omega^k(M)\) have a conjugate co-closed form \(\varepsilon \in \Omega^{n-k-2}(M)\). Set \(\varphi = i^*\omega\) and \(\psi = i^*\varepsilon\). The forms \(\omega\) and \(\varepsilon\) solve boundary value problems (3.5). Therefore

\[
\Lambda\varphi = i^*(\star d\omega), \quad \Lambda\psi = i^*(\star d\varepsilon).
\]

The second of equalities (5.4) and (5.1) imply

\[
\Lambda\psi = i^*d\omega = d(i^*\omega) = d\varphi.
\]

Applying the operator \(\star\) to (5.1), we get

\[
\star d\omega = (-1)^{kn+k+n+1}d\varepsilon.
\]

Together with the latter relation, the first of equalities (5.4) gives

\[
\Lambda\varphi = (-1)^{kn+k+n+1}i^*d\varepsilon = (-1)^{kn+k+n+1}d(i^*\varepsilon) = (-1)^{kn+k+n+1}d\psi.
\]

We have thus proved that

\[
\begin{cases}
\Lambda\varphi = (-1)^{kn+k+n+1}d\psi,
\Lambda\psi = d\varphi.
\end{cases}
\]

Eliminating \(\psi\) from the latter system, we obtain (5.2). The second of equations (5.5) is equivalent to (5.3).

Sufficiency. Let a form \(\varphi \in \Omega^k(\partial M)\) satisfy (5.2) and \(\omega\) be a solution to the boundary value problem (3.2). Applying the operator \(T = d\Lambda^{-1}\) to Eq. (5.2), we obtain

\[
(I + (-1)^{kn+k+n}T^2)d\varphi = 0,
\]

where \(I\) is the identity operator.

By Corollary 3.4, the equation

\[
\Lambda\psi = d\varphi
\]

is solvable. Fix a solution \(\psi\) to the equation and consider the boundary value problem

\[
\begin{cases}
d\varepsilon = \chi := (-1)^{kn+k+n+1}\star d\omega, \quad \delta\varepsilon = 0,
\quad i^*\varepsilon = \psi.
\end{cases}
\]

By Theorem 3.2.5 of [8], the necessary and sufficient conditions for solvability of the problem are

\[
d\chi = 0, \quad i^*\chi = d\psi,
\]
and
\[(\chi, \lambda_D) = \int_{\partial M} \psi \wedge i^*(\star \lambda_D) \quad \forall \lambda_D \in \mathcal{H}^{n-k-1}_D(M). \] (5.9)

The first condition is satisfied since
\[d\chi = \pm d \star d\omega = \pm \star \delta d\omega = \pm \star \Delta \omega = 0. \]

The second condition holds since, by (5.2),
\[i^*\chi = (-1)^{kn+k+n+1} i^*(\star d\omega) = (-1)^{kn+k+n+1} \Lambda \phi = d\Lambda^{-1} d\phi = d\psi. \]

It remains to check (5.9).

The left-hand side of (5.9) is equal to zero for any Dirichlet harmonic field \(\lambda_D \). Indeed, substituting the value of \(\chi \) from (5.8), we can write
\[(\chi, \lambda_D) = \pm (\star d\omega, \lambda_D) = \pm (d\omega, \star \lambda_D). \]

The right-hand side of the latter formula is zero by the second Friedrichs decomposition since \(d\omega \) is an exact harmonic field and \(\star \lambda_D \) is a Neumann harmonic field. Condition (5.9) is thus reduced to the following one:
\[\int_{\partial M} \psi \wedge i^* \lambda_N = 0 \quad \forall \lambda_N \in \mathcal{H}^{k+1}_N(M). \] (5.10)

By Theorem 4.2, \(i^* \mathcal{H}^{k+1}_N(M) \) coincides with the range of the operator
\[G = \Lambda + (-1)^{kn+k+n} d\Lambda^{-1} d : \Omega^{n-k-2} (\partial M) \to \Omega^{k+1} (\partial M). \] (5.11)

Therefore condition (5.10) can be rewritten as follows:
\[(\psi, \star \partial G \eta) = \pm \int_{\partial M} \psi \wedge G \eta = 0 \quad \forall \eta \in \Omega^{n-k-2} (\partial M). \]

In other words, \(\psi \) must belong to the kernel of the operator \(\star \partial G \).
\[(\star \partial G)^* \psi = 0. \] (5.12)

One easily obtains from (3.8)
\[G^* = \star \partial G \star \partial \]
and
\[(\star \partial G)^* = \pm \star \partial G. \]
Therefore (5.12) is equivalent to the equation
\[G \psi = 0. \] (5.13)

Finally, substituting the values \(\psi = \Lambda^{-1} d\phi \) and
\[G = \Lambda + (-1)^{kn+k+n} d\Lambda^{-1} d \]
into (5.13), we see that the latter equation is equivalent to (5.6).

We have thus proved the solvability of the boundary value problem (5.8). The solution \(\varepsilon \) to the problem is the conjugate form of \(\omega \). \(\Box \)
Corollary 5.2. For $1 \leq k \leq n - 1$, introduce the space
\[
\mathcal{B}^k(\partial M) = \{d\varphi \mid \varphi \in \Omega^{k-1}(\partial M), G\varphi = 0\} \subset \mathcal{E}^k(\partial M),
\]
where the operator $G : \Omega(\partial M) \to \Omega(\partial M)$ is defined by (5.11). The Hilbert transform T maps $\mathcal{B}^k(\partial M)$ isomorphically onto $\mathcal{B}^{n-k}(\partial M)$. If
\[
\tilde{T}_k : \mathcal{B}^k(\partial M) \to \mathcal{B}^{n-k}(\partial M)
\]
is the restriction of T to $\mathcal{B}^k(\partial M)$, then
\[
\tilde{T}_k^{-1} = (-1)^{kn+k} \tilde{T}_{n-k}.
\]

Proof. For a form $\varphi \in \Omega^{k-1}(\partial M)$ satisfying $G\varphi = 0$, let $\omega \in \Omega^{k-1}(M)$ be a solution to the boundary value problem (3.2). Then ω has a conjugate form $\varepsilon \in \Omega^{n-k-1}(M)$ by Theorem 5.1. The trace $\psi = i^* \varepsilon$ satisfies (5.3). The form ε has the conjugate $(-1)^{kn+k} \omega$, and $G\psi = 0$ by Theorem 5.1. Now, (5.3) shows that $T d\varphi = d\psi \in \mathcal{B}^{n-k}(\partial M)$. We have thus proved that T maps $\mathcal{B}^k(\partial M)$ to $\mathcal{B}^{n-k}(\partial M)$ and operator (5.14) is well defined. By (5.6), $\tilde{T}_{n-k} \tilde{T}_k = (-1)^{kn+k} I$. Therefore \tilde{T}_k is an isomorphism. \(\square\)

Corollary 5.3. Let $1 \leq k \leq n - 1$. If $\beta_k(M) = \beta_{n-k}(M) = 0$, then the Hilbert transform T maps $\mathcal{E}^k(\partial M)$ isomorphically onto $\mathcal{E}^{n-k}(\partial M)$. If
\[
T_k : \mathcal{E}^k(\partial M) \to \mathcal{E}^{n-k}(\partial M)
\]
is the restriction of T to $\mathcal{E}^k(\partial M)$, then $T_k^{-1} = (-1)^{kn+k} T_{n-k}$.

Proof. If $\beta_k(M) = \beta_{n-k}(M) = 0$, then the operator G vanishes on $\Omega^{k-1}(\partial M)$ and on $\Omega^{n-k-1}(\partial M)$ by Theorem 4.2. Therefore $\mathcal{B}^k(\partial M) = \mathcal{E}^k(\partial M)$ and $\mathcal{B}^{n-k}(\partial M) = \mathcal{E}^{n-k}(\partial M)$. It remains to apply Corollary 5.2. \(\square\)

6. DN map on highest degree forms

We prove here that the volume of the manifold can be easily determined from the DN map known on forms of highest degree.

Theorem 6.1. For $\varphi \in \Omega^{n-1}(\partial M)$, where $n = \dim M$, the function $\Lambda \varphi \in \Omega^0(\partial M)$ is constant and
\[
\Lambda \varphi = \frac{1}{Vol(M)} \int_{\partial M} \varphi.
\]
This is a generalization of the classical formula
\[
2 Vol(M) = \int_{\partial M} (x \, dy - y \, dx)
\]
for a plane domain M.

Proof. Let ω be a solution to the boundary value problem (3.2). By Lemma 3.1, $d\omega$ is a harmonic field. The space $\mathcal{H}^n(M)$ of harmonic fields of highest degree consists of forms $C \mu$, where $C = \text{const}$ and μ is the volume form. Thus,
\[
d\omega = C \mu, \quad C = \text{const}.
\]
From this, \(\star d \omega = C \) and
\[
\Lambda \varphi = i^* (\star d \omega) = C. \tag{6.1}
\]
Write down the Stokes formula for \(\omega \)
\[
\int_M d \omega = \int_{\partial M} i^* \omega.
\]
Since \(d \omega = C \mu \) and \(i^* \omega = \varphi \), this gives
\[
C \text{Vol}(M) = \int_{\partial M} \varphi.
\]
Together with (6.1), the last formula gives the statement of the theorem.

Let \(\mu_\partial \) be the volume form of \(\partial M \). Choosing a function \(\lambda \in C^\infty(\partial M) \) and setting \(\varphi = \lambda \mu_\partial \) in Theorem 6.1, we obtain
\[
\text{Vol}(M) = \frac{1}{\Lambda(\lambda \mu_\partial)} \int_{\partial M} \lambda \mu_\partial.
\]
Perhaps, this formula is of some interest for applications, e.g., in electro impedance tomography.

The question is whether the value of the constant function \(\Lambda(\lambda \mu_\partial) \) can be extracted from boundary measurements. If so, the volume \(\text{Vol}(M) \) can be determined from boundary measurements implemented on an arbitrarily small part of the boundary. Indeed, the function \(\lambda \) can be chosen to be supported in an arbitrary open subset of \(\partial M \) and it is enough to measure the value of the constant function \(\Lambda(\lambda \mu_\partial) \) at one point.

7. Recovering the additive real cohomology structure from the DN map

The exact cohomology sequence of the pair \((M, \partial M)\) looks as follows
\[
\cdots \to d^* \to H^{k-1}(M, \partial M) \to j^* H^k(M) \to j^* H^k(\partial M) \to \cdots \tag{7.1}
\]
We consider cohomologies with real coefficients. Recall that the finite dimensional vector spaces \(H^k(M) \) are defined as cohomologies of the De Rham complex
\[
\cdots \to d \to \Omega^{k-1}(M) \to d \to \Omega^k(M) \to d \to \Omega^{k+1}(M) \to d \to \cdots
\]
Similarly, \(H^k(\partial M) \) are cohomologies of the De Rham complex of the boundary. The operator \(i^* \) on (7.1) is defined by the equality \(i^*[\omega]_M = [i^* \omega]_{\partial M} \), where \([\omega]_M\) is the cohomology class of a closed form \(\omega \) in \(H^k(M) \) and \([i^* \omega]_{\partial M}\) is the cohomology class of the form \(i^* \omega \) in \(H^k(\partial M) \). The definition is correct since \(d \) and \(i^* \) commute.

Let us recall the definition of relative cohomologies. Let \(\Omega^k(M, \partial M) \) be the space of forms \(\omega \in \Omega^k(M) \) satisfying \(i^* \omega = 0 \). If \(i^* \omega = 0 \) then also \(i^* (d \omega) = 0 \). Therefore we have the well-defined cochain complex
\[
\cdots \to d \to \Omega^{k-1}(M, \partial M) \to d \to \Omega^k(M, \partial M) \to d \to \Omega^{k+1}(M, \partial M) \to d \to \cdots
\]
The spaces \(H^k(M, \partial M) \) are cohomologies of the latter complex. The operator \(j^* \) on (7.1) is induced by the embedding of pairs \(j : (M, \emptyset) \subset (M, \partial M) \). In other words, \(j^*[\omega]_{(M, \partial M)} = [\omega]_M \)
for a closed form \(\omega \in \Omega^k(M) \) satisfying \(i^*\omega = 0 \). The definition is correct since \([\omega]_M = 0 \) if \([\omega]_{(\partial M)} = 0 \). Finally, the coboundary operator \(\partial^* \) on (7.1) is defined as follows. Given a closed boundary form \(\omega \in \Omega^k(\partial M) \), let \(\alpha \in \Omega^k(M) \) be an extension of \(\omega \) to \(M \), i.e., \(i^*\omega = \omega \). The form \(d\alpha \) is closed and has the zero boundary trace. We set \(\partial^*[\omega]_{\partial M} = [d\alpha]_{(M,\partial M)} \). One can check the correctness of the definition.

Sequence (7.1) is exact, i.e., the kernel of each operator of the sequence coincides with the range of the preceding operator. This is the standard fact of cohomology theory [3].

Now, we pose the inverse problem: Given the data \((\partial M, \Lambda)\), one has to recover sequence (7.1) up to an isomorphism, i.e., to construct a sequence

\[
\cdots \rightarrow \tilde{H}^k(M, \partial M) \rightarrow \tilde{H}^k(M) \rightarrow H^k(\partial M) \rightarrow \tilde{H}^{k+1}(M, \partial M) \rightarrow \cdots
\]

(7.2)

of vector spaces and operators which is isomorphic to sequence (7.1). The latter means the existence of a commutative diagram

\[
\cdots \rightarrow \tilde{H}^k(M, \partial M) \rightarrow \tilde{H}^k(M) \rightarrow H^k(\partial M) \rightarrow \tilde{H}^{k+1}(M, \partial M) \rightarrow \cdots
\]

(7.3)

where \(\lambda, \mu \) are isomorphisms and \(\iota \) is the identity operator.

We present the solution of the inverse problem based on the results of previous sections.

By Theorem 4.2, we can determine the spaces \(i^*\mathcal{H}^n_N(M) \) from our data \((\partial M, \Lambda)\). We define

\[
\tilde{H}^k(M) = i^*\mathcal{H}^n_N(M), \quad \tilde{H}^k(M, \partial M) = i^*\mathcal{H}^{n-k}_N(M).
\]

The homomorphism \(\tilde{H}^k(M) \rightarrow H^k(\partial M) \) is defined as follows. If \(\varphi = i^*\omega \in \tilde{H}^k(M) \) for \(\omega \in \mathcal{H}^n_N(M) \), then the form \(\varphi \in \Omega^k(\partial M) \) is closed, and we set \(i^*\varphi = [\varphi]_{\partial M} \).

In Section 5, we defined the Hilbert transform as an operator on the space of boundary traces of harmonic fields:

\[
T = d\Lambda^{-1} : i^*\mathcal{H}^k(M) \rightarrow i^*\mathcal{H}^{n-k}(M).
\]

Moreover, the following holds:

Lemma 7.1. The Hilbert transform maps traces of Neumann harmonic fields again to traces of Neumann harmonic fields, i.e.,

\[
T = d\Lambda^{-1} : i^*\mathcal{H}^n_N(M) \rightarrow i^*\mathcal{H}^{n-k}_N(M).
\]

Proof. Let \(\psi \in i^*\mathcal{H}^n_N(M) \). By Theorem 4.2, \(\psi \) can be represented as

\[
\psi = (\Lambda + (-1)^{kn+k+1}d\Lambda^{-1}d)\varphi
\]

with some \(\varphi \in \Omega^{n-k-1}(\partial M) \). From this

\[
T\psi = d\Lambda^{-1}\psi = d\Lambda^{-1}(\Lambda + (-1)^{kn+k+1}d\Lambda^{-1}d)\varphi
\]

\[
= (d + (-1)^{kn+k+1}d\Lambda^{-1}d)\Lambda^{-1}d\varphi = (\Lambda + (-1)^{kn+k+1}d\Lambda^{-1}d)\Lambda^{-1}d\varphi.
\]

The right-hand side of the latter formula belongs to \(i^*\mathcal{H}^{n-k}_N(M) \) by the same Theorem 4.2. \(\square \)
We continue constructing sequence (7.2). On using Lemma 7.1, we define the homomorphism
\[\tilde{j}^*: \tilde{H}^k(M, \partial M) \longrightarrow \tilde{H}^k(M) \] as
\[\tilde{j}^* = (-1)^{kn+k+1} T: \tilde{H}^k(M, \partial M) = i^* \mathcal{H}^{n-k}_N(M) \longrightarrow i^* \mathcal{H}^k_N(M) = \tilde{H}^k(M). \]
Finally, the homomorphism \[\tilde{\partial}^*: H^k(\partial M) \longrightarrow \tilde{H}^{k+1}(M, \partial M) \] is defined as
\[\tilde{\partial}^* = (-1)^{kn+k+n+1} \Lambda: H^k(\partial M) \longrightarrow i^* \mathcal{H}^{n-k-1}_N(M) = \tilde{H}^{k+1}(M, \partial M). \]

More precisely, we observe that, given a closed form \(\phi \in \Omega^k(\partial M) \), the form \(\Lambda \phi \) belongs to the space \(i^* \mathcal{H}^{n-k-1}_N(M) \) in view of Theorem 4.2 and of the equality \(\Lambda \phi = (\Lambda + (-1)^{kn+k+n+1}d\Lambda - d)\phi \). We set
\[\tilde{\partial}^*[\phi]_{|\partial M} = (-1)^{kn+k+n+1} \Lambda \phi. \]

The definition is correct since \(\Lambda d = 0 \).

We have thus constructed sequence (7.2). Next, we will define the vertical isomorphisms \(\lambda \) and \(\mu \) participating on diagram (7.3).

The operator \(\tilde{H}^k(M) \xrightarrow{\lambda} H^k(M) \) is defined as follows. If \(\phi = i^* \omega \) for \(\omega \in \mathcal{H}^k_N(M) \), then \(\lambda \phi = [\omega]_M \). It is the isomorphism because there exists a unique Neumann harmonic field in any cohomology class.

The homomorphism \(\tilde{H}^k(M, \partial M) \xrightarrow{\mu} H^k(M, \partial M) \) is defined as follows. If \(\phi = i^* \omega \) for \(\omega \in \mathcal{H}^{n-k}_N(M) \), then the form \(\ast \omega \in \mathcal{H}^k_D(M) \) is closed and \(i^*(\ast \omega) = 0 \). We set \(\mu \phi = [\ast \omega]_{(M, \partial M)} \). It is the isomorphism because every relative cohomology class contains a unique Dirichlet harmonic field.

We have thus defined all terms of diagram (7.3). Now, we have to check that the diagram is commutative.

The commutativity of the square
\[\begin{array}{ccc}
\tilde{H}^k(M) & \xrightarrow{i^*} & H^k(\partial M) \\
\lambda \downarrow & & \downarrow i \\
H^k(M) & \xrightarrow{i^*} & H^k(\partial M)
\end{array} \]
is almost obvious. Indeed, a form \(\phi \in \tilde{H}^k(M) = i^* \mathcal{H}^k_N(M) \) can be uniquely represented as \(\phi = i^* \omega \) with \(\omega \in \mathcal{H}^k_N(M) \). Then
\[i^* \lambda \phi = [i^* \omega]_{|\partial M} = [\phi]_{|\partial M} = \tilde{i}^* \phi. \]

Next, we check the commutativity of the square
\[\begin{array}{ccc}
\tilde{H}^k(M, \partial M) & \xrightarrow{j^*} & \tilde{H}^k(M) \\
\mu \downarrow & & \downarrow \lambda \\
H^k(M, \partial M) & \xrightarrow{j^*} & H^k(M)
\end{array} \]
Let \(\varphi \in \tilde{H}^k(M, \partial M) = i^* \mathcal{H}^{n-k}_N(M) \). Represent it as
\[\varphi = i^* \omega, \quad \omega \in \mathcal{H}^{n-k}_N(M). \]

By the definition of \(\mu \),
\[\mu \varphi = [\ast \omega]_{(M, \partial M)}. \]
Therefore
\[j^* \mu \phi = [\ast \omega]_M. \] (7.4)

The form \(\psi = j^* \varphi \in H^k(M) = i^* H_N^k(M) \) can be also represented as
\[j^* \varphi = \psi = i^* v, \quad v \in H_N^k(M). \]

By the definition of \(\lambda \),
\[\lambda j^* \varphi = \lambda \psi = [v]_M. \] (7.5)

Comparing (7.4) and (7.5), we see that the commutativity of the square is equivalent to the equality
\[[\ast \omega]_M = [v]_M \]
which means that the Friedrichs decomposition of the form \(\ast \omega \) must look as follows:
\[\ast \omega = v + d\alpha, \quad \alpha \in \Omega^{k-1}(M). \] (7.6)

By the remark at the end of Section 2, we can assume the form \(\alpha \) to satisfy the equations
\[\Delta \alpha = 0, \quad \delta \alpha = 0. \]

Restricting equation (7.6) to the boundary, we have
\[\psi = i^* v = -i^* d\alpha = -di^* \alpha. \] (7.7)

On the other hand, applying \(\ast \) to (7.6), we obtain
\[(-1)^{k(n-k)} \omega = \ast v + \ast d\alpha. \]

Take the restriction of the last equation to the boundary
\[(-1)^{k(n-k)} \varphi = (-1)^{k(n-k)} i^* \omega = i^* (\ast d\alpha) = \Lambda j^* \alpha. \]

From this
\[i^* \alpha = (-1)^{k(n-k)} \Lambda^{-1} \varphi, \]
Substituting the latter value into (7.7), we obtain
\[\psi = (-1)^{kn+k+1} d\Lambda^{-1} \varphi = (-1)^{kn+k+1} T \varphi \]
or
\[j^* \varphi = (-1)^{kn+k+1} T \varphi. \]

This is just our definition of \(j^* \).

Finally, we check the commutativity of the square
\[H^k(\partial M) \xrightarrow{\partial^*} H^{k+1}(M, \partial M) \]
\[\iota \downarrow \quad \mu \downarrow \]
\[H^k(\partial M) \xrightarrow{\partial^*} H^{k+1}(M, \partial M) \]

Given a closed form \(\varphi \in \Omega^k(\partial M) \), let \(\omega \in \Omega^k(M) \) be a solution to the boundary value problem (3.2). Then
\[\partial^* [\varphi]_{\partial M} = [d \omega]_{(M, \partial M)} \] (7.8)
and

\[\Lambda \varphi = i^* (\ast d \omega) . \]

By the definition of \(\mu \),

\[\mu \Lambda \varphi = [\ast \ast d \omega]_{(M, \partial M)} = (-1)^{kn+k+n+1} [d \omega]_{(M, \partial M)}. \]

(7.9)

Comparing (7.8) and (7.9), we obtain

\[\mu \Lambda \varphi = (-1)^{kn+k+n+1} \partial^* [\varphi]_{\partial M} . \]

According to our definition of \(\tilde{\partial}^* \), the last equation means that

\[\mu \tilde{\partial}^* [\varphi]_{\partial M} = \partial^* [\varphi]_{\partial M} . \]

We have thus proved the commutativity of diagram (7.3). Let us mention the following supplement to Lemma 7.1:

Corollary 7.2. If \(\beta_{k-1} (\partial M) = \beta_k (\partial M) = 0 \), then the Hilbert transform

\[T : i^* \mathcal{H}^{n-k}_N (M) \longrightarrow i^* \mathcal{H}^k_N (M) \]

is the isomorphism.

In conclusion, we emphasize the key role of the operators \(\Lambda \) and \(T \) in the construction of sequence (7.2). Probably, such a role inscribes the DN map and Hilbert transform into the list of objects of algebraic topology. We also set up an important open question. Recall that the cohomology spaces \(H^*(M) = \bigoplus_{k=0}^{\infty} H^k(M) \) and \(H^*(M, \partial M) = \bigoplus_{k=0}^{\infty} H^k(M, \partial M) \) have the structure of graded rings with the multiplication induced by the wedge product of forms. Can the multiplicative structure of cohomologies be recovered from our data \((\partial M, \Lambda) \)? Till now, the authors cannot answer the question.

References

